w00 h00, look what i made
.
and the questions thing.... you can ask away... we just can't answer them, lol. you might confuse yourself but you will probably confuse me with you so at least we will be on the same level
.
-------------------------------------------------------------------------
** For TI-89's **
Calculus()
Prgm
Local OneOne, OneTwo
Local TwoOne, TwoTwo, TwoThree, TwoFour
Local ThreeOne, ThreeTwo, ThreThre, ThreFour, ThreFive
Local FourOne, FourTwo, FourThre, FourFour
Local FiveOne, FiveTwo, FiveThre, FiveFour, FiveFive, FiveSix
Lbl I
ClrHome
ClrIO
Toolbar
Title "Options"
Item "Degrees", Deg
Item "Radians", Rad
Item "Quit", Ex
Title "Chapter 1"
Item "Verb. Lim", OneOne
Item "Trap. Rule", OneTwo
Title "Chapter 2"
Item "Epsilon/Delta", TwoOne
Item "Limit Props.", TwoTwo
Item "Continuity", TwoThree
Item "Limit Signs", TwoFour
Title "Chapter 3"
Item "Derivitive", ThreeOne
Item "Diff. Quotes", ThreeTwo
Item "Vel/Acc", ThreThre
Item "Squeeze Theor.", ThreFour
Item "Sinusoids", ThreFive
Title "Chapter 4"
Item "Prod./Quot.", FourOne
Item "Deriv Facts 1", FourTwo
Item "Deriv Facts 2", FourThre
Item "Parametric dy", FourFour
Title "Chapter 5"
Item "Linearization", FiveOne
Item "Differentials", FiveTwo
Item "Reimann Sums", FiveThre
Item "Mean Value", FiveFour
Item "Rolle's Theor.", FiveFive
Item "Simpsons Rule", FiveSix
Title "Chapter 6"
Item "Natural Logs", SixOne
Item "General Rule", SixTwo
Item "Define e", SixThree
Item "Deriv. e", SixFour
Item "Inverses", SixFive
Item "Integrals", SixSix
EndTbar
Lbl Deg
setMode("Angle","Degree")
Disp "Calculator Set To Degree Mode."
Pause
Goto I
Lbl Rad
setMode("Angle","Radian")
Disp "Calculator Set To Radian Mode."
Pause
Goto I
Lbl Ex
ClrIO
ClrHome
Stop
Lbl OneOne
Disp "L is the limit of f(x)"
Disp "as x approaches c"
Disp "if and only if"
Disp "L is the one number you"
Disp "can keep f(x) arbitrarily"
Disp "clas to just by keeping"
Disp "x close enough to c"
Pause
Goto I
Lbl OneTwo
Disp "A = (1/2) (<>x) *"
Disp "(f(x[1])+2f(x[2])+.."
Disp "+2f(x[n-1])+f(x[n])"
Pause
Goto I
Lbl TwoOne
Disp "L+E < f(x) < L-E"
Disp "Solve For x"
Disp "x = Difference/Delta."
Pause
Goto I
Lbl TwoTwo
Disp "lim g(x)|x->c = L1"
Disp "lim h(x)|x->c = L2"
Disp "[g(x)+h(x)] = L1+L2"
Disp "[g(x)*h(x)] = L1*L2"
Disp "[g(x)/h(x)] = L1/L2"
Disp "[K*g(x)] = K*L1"
Pause
Goto I
Lbl TwoThree
Disp "1. f(c) exists"
Disp "2. lim f(x) exists"
Disp " x->c"
Disp "3. lim f(x) = f(c)"
Disp " x->c"
Pause
Goto I
Lbl TwoFour
Disp "lim f(x) x->c from left."
Disp "x->c- goin right."
Disp "lim f(x) x->c from right."
Disp "x->c+ going left."
Pause
Goto I
Lbl ThreeOne
Disp "lim f(x)-f(c)"
Disp "x->c x-c"
Disp " ALSO"
Disp "lim f(x+h)-f(x)"
Disp "h->0 h"
Pause
Goto I
Lbl ThreeTwo
Disp "For: f(x+h)-f(x)"
Disp " h"
Disp "Back: f(x-h)-f(x)"
Disp " h"
Disp "Sym: f(x-h)-f(x+h)"
Disp " 2h"
Pause
Goto I
Lbl ThreThre
Disp "Displacement: x"
Disp "Velocity: dx/dt = v"
Disp "Accel: dv/dt = a"
Disp "f(x) - f'(x) - f''(x)"
Pause
Goto I
Lbl ThreFour
Disp "1. g(x)<=h(x)|x near c"
Disp "2. lim g(x) = lim h(x)"
Disp " x->c x->c"
Disp "3. g(x)<=f(x)<=h(x)"
Disp " for all x near c"
Pause
Goto I
Lbl ThreFive
Disp "y = C + A(cos(B(x-D)))"
Disp "1. Sinusoidal Axis: y=c"
Disp "2. Amplitude: |A|"
Disp "3. Period: 2pie/|B|"
Disp "4. Phase Displacement: D"
Pause
Goto I
Lbl FourOne
Disp "Product: y = uv"
Disp "y' = u'v + v'u"
Disp "Quotient y = u/v"
Disp "y' = (u'v - v'u)"
Disp " v^2"
Pause
Goto I
Lbl FourTwo
Disp "tan'(x) = (sec(x))^2"
Disp "cot'(x) = -(csc(x))^2"
Disp "sec'(x) = sec(x)tan(x)"
Disp "csc'(x) = -csc(x)cot(x)"
Pause
Goto I
Lbl FourThre
Disp "sin-1(x) = 1/SQRT(1-x^2)"
Disp "tan-1(x) = 1/(1+x^2)"
Disp "sec-1(x) = 1/(|X|SQRT(x^2-1))"
Disp "co functions are negative."
Pause
Goto I
Lbl FourFour
Disp "dy = dy/dt"
Disp "dx = dx/dt"
Disp " -ALSO-"
Disp "dy = y'"
Disp "dx = x'"
Pause
Goto I
Lbl FiveOne
Disp "Linear function that best fits"
Disp "function f for values of x"
Disp "close to c is:"
Disp " "
Disp "y = f(c) + f'(c)(x-c)"
Disp "y = f(c) + f'(c)dx"
Pause
Goto I
Lbl FiveTwo
Disp "dx = deltax"
Disp "dy = f'(x)dx"
Pause
Goto I
Lbl FiveThre
Disp "Summation of:"
Disp "f(x[k])deltax[k]"
Pause
Goto I
Lbl FiveFour
Disp "1. f is differentiable"
Disp " always on"
Disp " interval (a,b)"
Disp "2. f is continuous"
Disp " at a and b"
Disp "f'(c) = f(b) - f(a)"
Disp " b - a"
Pause
Goto I
Lbl FiveFive
Disp "1. f is differentiable"
Disp " always on"
Disp " interval (a,b)"
Disp "2. f is continuous"
Disp " at a and b"
Disp "3. f(a) = f(b) = 0"
Pause
Goto I
Lbl FiveSix
Disp "(1/3)deltax * (total)"
Disp "total= y[1]+4y[2]+2y[3]"
Disp "+4y[4]+2y[5]+...."
Disp "+2y[n-2]+4y[n-1]+y[n]"
Pause
Goto I
Lbl SixOne
Disp "(d/dx) ln(x) = 1/x"
Disp "integ (1/x) dx = ln|x| + c"
Disp "ln(1) = 0"
Pause
Goto I
Lbl SixTwo
Disp "b^a = c"
Disp "a = log c"
Disp " log b"
Pause
Goto I
Lbl SixThree
Disp "e = lim ((1+n)^(1/n))"
Disp " n->0"
Disp " ALSO"
Disp "e = lim ((1+(1/n))^n)"
Disp " n->0"
Pause
Goto I
Lbl SixFour
Disp "f(x) = e^x"
Disp "f'(x) = e^x * x'"
Pause
Goto I
Lbl SixFive
Disp "exp(ln(x)) = x"
Disp "ln(exp(x)) = x"
Disp "e^ln(x) = x"
Disp "ln(e^x) = x"
Pause
Goto I
Lbl SixSix
Disp "Integrals"
Disp "tan(x)dx = ln|sec(x)|+C"
Disp "cot(x)dx = 1ln|csc(x)|+C"
Disp "sec(x)dx = ln|sec(x)+tan(x)|+C"
Disp "csc(x)dx = ln|csc(x)-cot(x)|+C"
Pause
Goto I
EndPrgm